Conv1d
1D Convolutional Layer
Applies 1D convolution over an input signal (sequences, time series, audio).
Parameters:
- in_channels: Number of channels in input
- out_channels: Number of channels produced by convolution
- kernel_size: Size of the convolving kernel
- stride: Stride of the convolution (default: 1)
- padding: Zero-padding added to both sides (default: 0)
- dilation: Spacing between kernel elements (default: 1)
- groups: Number of blocked connections (default: 1)
- bias: If true, adds learnable bias (default: true)
Shape Contract:
- Input: [batch, in_channels, length]
- Output: [batch, out_channels, out_length]
Notes:
- Output length: (length + 2padding - dilation(kernel_size-1) - 1) / stride + 1
- Used for sequence modeling, audio processing, time series
- WaveNet, TCN, and other temporal architectures
Signature
neuron Conv1d(in_channels, out_channels, kernel_size, stride=Int(1), padding=Int(0), dilation=Int(1), groups=Int(1), bias=Bool(true))
Ports
Inputs:
default:[batch, in_channels, length]
Outputs:
default:[batch, out_channels, *]
Implementation
Source { source: "core", path: "convolutions/Conv1d" }