AdaptiveMaxPool
Adaptive Max Pooling
Pools input to a fixed output size using max operation. Automatically calculates kernel size and stride to achieve target output.
Parameters:
- output_size: Target spatial size (height and width will both be this value)
Shape Contract:
- Input: [batch, channels, height, width] (any spatial size)
- Output: [batch, channels, output_size, output_size]
Notes:
- Accepts any input spatial size, outputs fixed size
- output_size=1 is common for global max pooling
- Used before fully-connected layers to handle variable input sizes
- No learnable parameters
- Preserves strongest activations (max values)
Signature
neuron AdaptiveMaxPool(output_size)
Ports
Inputs:
default:[batch, channels, *, *]
Outputs:
default:[batch, channels, output_size, output_size]
Implementation
Source { source: "core", path: "pooling/AdaptiveMaxPool" }